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Abstract

After an introductory level discussion of momentum and angular me-

mentum, the inertia tensor is introduced. The following theorem is proved:

If I1, I2, and I3 are the moments of inertia about the corresponding prin-

ciple axes of rotation x1, x2, and x3 such that I1 > I2 > I3 then the x1

and x3 axes are stable axes of rotation while the x2 axis is an unstable

axis of rotation.

This paper was inspired by a lecture given by Professor Bill Heidbrink

of the University of California, Irvine Department of Physics and Astron-

omy. If you would like to print out this document in full you should

use the non-fragmented version . The original documents were writen in

LATEX and if you prefer you can get the original LATEX source code. If

you have any questions you can email me sdrasco@uci.eduand I would be

more than happy to help out.

1 Momentum

One of the most fundamental concepts in physics is momentum. When you push
a block across a table physicists say you have given the block momentum. For
a single particle of mass m and velocity v it’s momentum p is given by

p = mv (1)

So you can see that when you push a block you give it some velocity which in
turn means it has momentum.

One of the most useful properties of momentum is that if there are no forces
acting on the particle inertia will be constant in time. To see why consider the
famous law discovered by Isaac Newton

F = ma (2)

1



This law can be written

F = m
d2x

dt2

=
d

dt

(

m
dx

dt

)

=
dp

dt

This version of Newton’s second law is more compact1. Now suppose we don’t
have any forces acting. That means dp/dt = 0 which of course means that p is
constant in time. The importance of the conservation of momentum can not be
overemphasized.

2 Angular momentum

If an particle has a lot of momentum and you want to drastically alter the path
it is traveling along you have to apply a lot of force to the particle. You can see
this from F = dp/dt. If you were to apply only a small force, the momentum
would only change a small amount. This is one of the handiest ways to think
of momentum. You ask yourself how hard it would be to drastically alter the
motion of an object and you get an idea of how much momentum the object
has. So an ice cube sliding along the table would have less momentum than a
dictionary sliding along at the same speed.

Now suppose you were to take a heavy bowling ball and give it a good
fast spin. You’re not rolling it anywhere—just let it spin in place. You can
imagine that it takes a substantial amount of force to get it to stop spinning.
That is to say leaning down and blowing on it wouldn’t be very effective. By
the same logic as before you might think this means that the object has a lot
of momentum. But the bowling ball doesn’t have any velocity which means
momentum (as we have defined it) is zero!2

Low and behold physicists have another quantity called angular momentum
to describe spinning objects such as our bowling ball. Angular momentum is
defined as follows

L = Iω (3)

where ω is the angular velocity of the object about one of the principle axes of
the object3 and I is something called the moment of inertia about that axis.

1You might be interested to know that Newton’s second law actually is F = dp/dt. There
is a big difference between this statement and equation (1) when the mass of the object of
interest is a function of time.

2If you are substantially clever you might want to say that each chunk of the ball has some
velocity of it’s own as it goes round and round. This is a wise idea except the problem is that
for each chunk of the ball having some velocity there is an equally size chunk on the other
side of the ball with a velocity exactly opposite to the first chunk so the total momentum (as
we have defined it) is still zero.

3I will explain what is meant by principle axes later.

2



I depends on the geometry of the object relative to the axis of rotation. I is
defined as

I =

∫

ρ |r|
2
dτ

where ρ is mass density function, dτ is the differential volume element, and r is
the shortest vector which points from the axis of rotation to the volume element.

Actually when we discuss a “force” which changes the way an object rotates
we call it a torque rather than a force. The variable I will use for torque is N.
Just as when there are no forces acting on an object momentum is conserved—
when there are no torques acting on an object angular momentum is conserved.
This result is derived from the following equation which I will state without
proof.

N =
dL

dt
(4)

To derive the law of conservation of angular momentum, set N equal to zero in
equation 4 and apply the same argument we used to get the law of conservation
of momentum. Again it must be said that the law of conservation of angular
momentum can not be over emphasized.

You should notice the similarity between F = dp/dt and N = dL/dt. The
same similarity exists between L = Iω and p = mv. These equations are
almost perfect analogs except there is this funny business about I depending on
what principle axis the object is rotating about. We want to develop a more
complete equation for L which is a perfect analog to p.

3 The inertia tensor

Consider a rectangular block of wood of uniform mass density. If you use
center of mass of the block for the origin of your coordinate system then each of
the three principle axes is perpendicular to two different faces of the block. I’m
telling you this—it was not intended to be an obvious fact. For notation we will
use (x1, x2, x3) to denote the position of a point in this system of coordinates.
Now for each of the axes we have a moment of inertia

I1 =

∫

ρ |r1|
2
dτ

I2 =

∫

ρ |r2|
2
dτ

I3 =

∫

ρ |r3|
2
dτ

If we make a matrix I defined by

I =





I1 0 0
0 I2 0
0 0 I3



 (5)
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then we can write an equation for the angular momentum for any kind of crazy
rotation of our block





L1

L2

L3



 =





I1 0 0
0 I2 0
0 0 I3









ω1

ω2

ω3





L = Iω

Take a moment to think over what we just did until you can see that it agrees
with equation 3.

You should know that I is not just a matrix in the same way that (L1, L2, L3)
is not just a matrix. In fact (L1, L2, L3) is just a nice way to represent a real
geometrical object—the angular momentum vector. It doesn’t matter what
crazy coordinate system you want to use to look at L. It is a geometrical
object. Similarly I is a geometrical object called a tensor. There isn’t any easy
way to draw a tensor with arrows on a graph as you would a vector, but this
does not change the fact that a tensor is a geometrical object independent of
your choice of coordinates.

4 Principle axes

Now I must have annoyed some people back there when I mentioned principle
axes. I didn’t even say what they are! I feel as though I have to say something
about them.

I will state without proof here that the inertia tensor has the form

I =





I11 I12 I13
I21 I22 I23
I31 I32 I33





where

Iij =

∫

ρ
(

δij

∑

kx
2

k − xixj

)

dτ

and k runs from 1 to 3. The symbol δij is the Kronecker delta symbol and is
defined such that

δij =

{

1 if i = j
0 if i 6= j

Now the wonderful thing is4 that the eigenvectors of I are the principle axes
for the frame you chose and the eigenvalues are the corresponding moments
of inertia I1, I2, and I3. So if L = (L′

1, L
′

2, L
′

3) and ω = (ω′

1, ω
′

2, ω
′

3) are the
angular momentum and angular velocity vectors as viewed from the principle
axis coordinate system then we have





L′

1

L′

2

L′

3



 =





I1 0 0
0 I2 0
0 0 I3









ω′

1

ω′

2

ω′

3





4Again this is not supposed to be an obvious fact. You will have to take my word for it.
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This is of course still just L = Iω but now we have a nice diagonal matrix to
work with, we have principle axes of rotation, and we are very happy. From
now on we will only use the center of mass for our origin and we will only use
the principle axes coordinate system.

5 Stable and unstable rotations

It’s now time for some informal definitions.

Definition 1 If you give an object a twist about an axis and it seems to whirl

around nicely about the axis you originally spun it on, we say that this axis is a

stable axis of rotation.

Definition 2 If you give an object a twist about an axis and the object seems to

not only rotate about the axis you spun it on but it starts to develope rotations

about other axes, we say the axis it was originally spun on is an unstable axis

of rotation.

Theorem 3 If I1, I2, and I3 are the moments of inertia about the corresponding

principle axes of rotation x1, x2, and x3 such that I1 > I2 > I3 then the x1

and x3 axes are stable axes of rotation while the x2 axis is an unstable axis of

rotation.

I give the following informal proof of the theorem.
Proof. Assume, as described in the theorem I1, I2, and I3 are the moments

of inertia about the principle axes of rotation and I1 > I2 > I3. The kinetic
energy of a particle is given by the familiar equation T = 1

2
mv2. I will state

without proof that analogously for angular motion, kinetic energy is given by

T =
1

2
I |ω|

2

=
1

2
I (ω · ω)

=
1

2
(Iω) · ω

=
1

2
L · ω

Since L = (I1ω1, I2ω2, I3ω3) and of course ω = (ω1, ω2, ω3) we can write the
above result as

T =
1

2

(

I1ω
2

1 + I2ω
2

2 + I3ω
2

3

)

(6)

2T = I1ω
2

1 + I2ω
2

2 + I3ω
2

3 (7)

Also we have
|L|

2
= I2

1ω
2

1 + I2

2ω
2

2 + I2

3ω
2

3 (8)
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For reasons you will understand later—we are going to consider the quantity

2TI1 − |L|
2

It is important to understand that this quantity is equal to a constant. To see
why look at the individual Terms. Of course 2 is a scalar constant. Since I1

depends only on the geometry of the object it too is a constant in time. The
potential energy of our object is approximately constant, therefore since energy
is conserved5 the kinetic energy T must be constant as well. Finally since there
are no torques acting on our object the angular momentum is conserved. Thus
|L|

2
is constant in time.
Now we are all set to consider individual rotations. First suppose we give

our object a spin so that ω2 = ω3 ' 0 and |ω| ' ω1. Then we can write

2TI1 − |L|
2
= I1

(

I1ω
2

1 + I2ω
2

2 + I3ω
2

3

)

−
(

I2

1ω
2

1 + I2

2ω
2

2 + I2

3ω
2

3

)

= I1I2ω
2

2 + I1I3ω
2

3 − I2

2ω
2

2 − I2

3ω
2

3

= I2 (I1 − I2)ω
2

2 + I3 (I1 − I3)ω
2

3

but ω2 = ω3 ' 0 so we have

2TI1 − |L|
2
= I2 (I1 − I2)ω

2

2 + I3 (I1 − I3)ω
2

3

' 0 = constant

or
I2 (I1 − I2)ω

2

2 + I3 (I1 − I3)ω
2

3 ' 0 = constant (9)

Similarly if we were to have set things up initially so that ω1 = ω2 ' 0 and
|ω| ' ω3 we would find

I1 (I3 − I1)ω
2

1 + I2 (I3 − I2)ω
2

2 ' 0 = constant (10)

and if we set things up so that initially ω1 = ω3 ' 0 and |ω| ' ω2 we would find

I1 (I2 − I1)ω
2

1 + I3 (I2 − I3)ω
2

3 ' 0 = constant (11)

You may not realize it but that’s it—we’ve proved the theorem! To under-
stand why focus on equation 9. Recall that we assumed I1 > I2 > I3 so both
the terms in parentheses are positive. Also of course ω2

2 and ω2
3 are positive.

This means that there can be no sizable changes in either ω2 or ω3. For if ω2

got bigger the first term of the equation would increase. That means that the
second term has to get smaller so that the total is still about 0. The best the
second term can do is go to zero so we can’t allow sizable changes in ω2. By the
same argument, there will be no sizable changes in ω3. Thus if we only start
off with rotation about x1 no significant rotations can develop about the other
axes. We conclude x1 is a stable axis of rotation.

5Ignore any frictional forces.
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The argument is almost exactly the same for equation 10. The difference
here is that both terms in parentheses are negative. Regardless there can be no
big changes in either term because the most the other term can do to compensate
is go to zero. Thus if we only start off with rotation about x3 no significant
rotations can develop about the other axes. We conclude x3 is a stable axis of
rotation.

Finally look at equation 11. The first term in parentheses is negative while
the second term in parentheses is positive. This means that we can allow
significant changes in either ω1 or ω3. Thus if we only start off with rotation
about x2 rotations about the other axes can develop. We conclude x2 is an
unstable axis of rotation.

6 An after dinner trick

Now it is time for us to reward ourselves for our hard work. Since the subject
matter here is physics we are able to see the results of our work animated
in real time without the help of any fancy computers. All you need is a rigid
rectangular object. An old textbook will do just fine6. Now what we want to do
is figure out what are the principle axes and what are the relative magnitudes
of the moments of inertia. You probably have in mind some integrals and
diagonalization of matrices etc. Lucky for us we don’t really need to fuss with
these. I already told you what the principle axes are for a rectangular block
when you pick the center of mass as your origin. Also it is not too hard to
eyeball the relative magnitudes of the moments of inertia. We will go through
it slowly so that you can see how it’s done.

The mass density function of a book is approximately constant. That is if
you don’t have any lead inserts or bookmarks you will be safe to write

I1 = ρ

∫

|r1|
2
dτ

I2 = ρ

∫

|r2|
2
dτ

I3 = ρ

∫

|r3|
2
dτ

We need to name our axes. Call the axis that pierces both the front and back
cover of the book x1. Call the axis that runs perpendicular to the spine of the
book and parallel to the covers x2. Finally call the axis that runs parallel to
the spine of the book x3.

Lets compare I1 and I3. If you look at the axes for a while you will see on
average a little chunk of the book is father from x1 than x3. Next look at the
equations for I1 and I3. If chunks of the book are on average farther from x1

than x3 then you should see the result is I1 > I3. For the equations depends on

6Note, you need to use a rectangular textbook. No square textbooks will work. Ask
yourself afterward why this is so.
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the square of the distance of each little chunk. Really convince yourself of this
before going on. It’s essential that you agree with me here. It may help to know
that the equations for I about a principle axis for a discrete mass distribution
(a scattered bunch of n particles say) is given by

I =
∑

nmnr
2

n

Now that you have convinced yourself that I1 > I3 a similar analysis should
convince you that I3 > I2. The fact that on average a little chunk of the book
is father from x3 than x2 is not as obvious as the previous case. It may take a
little longer to convince yourself of this.

After going through the above you should be a firm believer that if you really
carried out the integrals you would find

I1 > I2 > I3

Looking back at the theorem we just proved then this means it should be easy
to make it so the book rotates purely about either x1 or x3. Also it means
that you should have a heck of a time trying to get a pure rotation about x2—it
can be done—but you need to have just the right initial conditions and it is
virtually impossible. At this point if you aren’t wildly throwing books around
the room7 you must not have been paying attention. Give it a try!

Now you can try to do make guesses about the principle axes and relative
magnitudes of moments of inertia are for all sorts of objects. Just make sure
when you test your theories you don’t injure yourself. You can now impress all
your friends by challenging them to make stable rotations about unstable axes
of everyday objects.

7You might want to strap a rubber band around the book or tape it shut to make sure the
covers don’t flap like wings as you toss the book.
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